Paper Review

Contextual Gaussian Process Bandit Optimization

Andreas Krause and Cheng Soon Ong

Department of Computer Science, ETH Zurich
1. Problem Setting

What is the multi-armed bandit problem?

Exploration
An agent simultaneously attempts to acquire new knowledge.

Exploitation
An agent optimizes its decision based on existing knowledge.

Figure. Should I keep pulling the best lever so far or should I explore a new lever?

1. Problem Setting

What is the **multi-armed bandit problem**?

How should we sample x_1, x_2, \ldots sequentially from the k populations in order to achieve the greatest possible expected value of the sum $S_n = x_1 + \cdots + x_n$ as $n \to \infty$?

Rule : The player wants to choose **at each stage one of the k arms**, the choice depending in some way on the record of previous trials.

Goal : to maximize the long-run total expected reward
What is the **Contextual bandit problem**?

In most real-life applications, we have access to information that can be used to make a better decision when choosing among all actions in a MAB setting, this extra information is what gives Contextual Bandits their name.

In stochastic contextual bandit, the reward $r_{i,t}$ can be represented as a function of the context $c_{i,t}$ and noise $\epsilon_{i,t}$

$$r_{i,t} = f(c_{i,t}) + \epsilon_{i,t}$$
2. Previous Algorithm

LinUCB

Algorithm 2 BaselineUCB: Basic LinUCB with Linear Hypotheses at Step t

0: Inputs: $\alpha \in \mathbb{R}_+^+$, $\Psi_t \subset \{1, 2, \cdots, t-1\}$
1: $A_t \leftarrow I_d + \sum_{\tau \in \Psi_t} x_{t, a, \tau} x_{\tau, a, \tau}^T$
2: $b_t \leftarrow \sum_{\tau \in \Psi_t} r_{\tau, a, \tau} x_{\tau, a, \tau}$
3: $\theta_t \leftarrow A_t^{-1} b_t$
4: Observe K arm features, $x_{t, 1}, x_{t, 2}, \cdots, x_{t, K} \in \mathbb{R}^d$
5: for $a \in [K]$ do
6: $w_{t, a} \leftarrow \alpha \sqrt{x_{t, a}^T A_t^{-1} x_{t, a}}$
7: $\hat{r}_{t, a} \leftarrow \theta_t^T x_{t, a}$
8: end for
2. Previous Algorithm

Thompson Sampling

Algorithm 1: Thompson Sampling for Contextual bandits

Set $B = I_d$, $\hat{\mu} = 0_d$, $f = 0_d$.

for all $t = 1, 2, \ldots$, do

1. Sample $\tilde{\mu}(t)$ from distribution $\mathcal{N}(\tilde{\mu}, v^2B^{-1})$.

2. Play arm $a(t) := \arg \max b_i(t)^T \tilde{\mu}(t)$, and observe reward r_t.

3. Update $B = B + b_i(t)b_i(t)^T$, $f = f + b_i(t)r_t$, $\hat{\mu} = B^{-1}f$.

end for

Linear Payoff
All previous algorithms deal with the **linear case**. Then how about **nonlinear case**?

If we assume \(f \) is a member of **exponential family**, we can use GLM–UCB\(^1\).

If we assume \(f \) is sampled from a **Gaussian Process**, we can use GP–UCB\(^2\)/CGP–UCB\(^3\).

If we assume \(f \) is an element of **Reproducing Kernel Hilbert Space**, we can use KernelUCB\(^4\).

Also, we can use Thompson Sampling if we know the form of probability distribution.

1. Filippi et al. Parametric Bandits: The Generalized Linear Case NIPS 2010
3. This Paper will deal with this part (NIPS 2011)

GP-UCB is the algorithm of the context-free case.
Stochastic Contextual Bandit
Before algorithm….

- $P(Y) = N(Y|0, K)$
 - $K_{nm} = k(x_n, x_m) = \frac{1}{\alpha} \phi(x_n)^T \phi(x_m)$
- $t_n = y_n + e_n$
 - t_n: Observed value with noise
 - y_n: Latent, error-free value
 - e_n: Error term distributed by following the Gaussian distribution
- $P(t_n|y_n) = N(t_n|y_n, \beta^{-1})$
 - β: Hyper-parameter of the error precision (or, variance considering the invert)
- $P(T|Y) = N(T|Y, \beta^{-1}I_N)$
 - $T = (t_1, ..., t_N)^T$, $Y = (y_1, ..., y_N)^T$
 - Assuming that the error terms are independent
- $P(T) = \int P(T|Y)P(Y) dY = \int N(T|Y, \beta^{-1}I_N)N(Y|0, K) dY$

These are from the lecture note of IE661-AI and DM2-Gaussian Process-ver-2 made by prof Moon
Before algorithm….

• \(P(T) = \int P(T|Y)P(Y)dY = \int N(T|Y, \beta^{-1}I_N)N(Y|0, K)dY \)
• \(P(T|Y)P(Y) = P(T, Y) = P(Z) \)
• \(\ln P(Z) = \ln P(Y) + \ln P(T|Y) \)
 \[
 = -\frac{1}{2} (Y - 0)^T K^{-1} (Y - 0) - \frac{1}{2} (T - Y)^T \beta I_N (T - Y) + \text{const.} = -\frac{1}{2} Y^T K^{-1} Y - \frac{1}{2} (T - Y)^T \beta I_N (T - Y)
 \]
• Second order term of \(\ln P(Z) \)

 \[
 -\frac{1}{2} Y^T K^{-1} Y - \frac{\beta}{2} T^T T + \frac{\beta}{2} T Y - \frac{\beta}{2} Y^T Y = -\frac{1}{2} \begin{pmatrix} Y \\ T \end{pmatrix}^T \begin{pmatrix} K^{-1} & \beta I_N \\ -\beta I_N & \beta I_N \end{pmatrix} \begin{pmatrix} Y \\ T \end{pmatrix} = -\frac{1}{2} Z^T R Z
 \]

 • \(R \) becomes the precision matrix of \(Z \)

 \[
 M = (K^{-1} + \beta I_N - \beta I_N (\beta I_N)^{-1} \beta I_N)^{-1} = \tilde{K}
 \]

 \[
 R^{-1} = \begin{pmatrix} K & K \beta I_N (\beta I_N)^{-1} \\ (\beta I_N)^{-1} \beta I_N K (\beta I_N)^{-1} + (\beta I_N)^{-1} \beta I_N K (\beta I_N)^{-1} \end{pmatrix} = \begin{pmatrix} K \\ (\beta I_N)^{-1} + K \end{pmatrix}
 \]
• First order term of \(\ln P(Z) \) \(\Rightarrow \) None
• \(P(Z) = N(Z|0, R^{-1}) \)

These are from the lecture note of IE661-AI and DM2-Gaussian Process-ver-2 made by prof Moon
\[P(T) = \int P(T|Y)P(Y)dY = \int N(T|Y, \beta^{-1}I_N)N(Y|0,K)dY \]

\[P(T|Y)P(Y) = P(Y,T) = P(Z) \]

\[P(Y,T) = N(Y,T|(0\ 0), \begin{pmatrix} K & K \\ K & (\beta I_N)^{-1} + K \end{pmatrix}) \]

- Precision Matrix = \begin{pmatrix} K^{-1} + \beta I_N & -\beta I_N \\ -\beta I_N & \beta I_N \end{pmatrix}

Two theorems on multivariate normal distributions

- Given \(X = [X_1 \ X_2]^T, \mu = [\mu_1 \ \mu_2]^T, \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \)

\[P(X_1) = N(X_1|\mu_1, \Sigma_{11}) \]

\[P(X_1|X_2) = N(X_1|\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}) \]

\[P(T) = N(T|0, (\beta I_N)^{-1} + K) \]

- \(K_{nm} = k(x_n, x_m) = \frac{1}{\alpha} \phi(x_n)^T \phi(x_m) \)

- One example \(k(x_n, x_m) = \theta_0 \exp\left(-\frac{\theta_1}{2} \left| x_n - x_m \right|^2 \right) + \theta_2 + \theta_3 x_n^T x_m \)

- Our ultimate question as a regression problem is

\[P(t_{N+1}|T_N) =? \rightarrow P(T_{N+1}) =! \]

These are from the lecture note of IE661-AI and DM2-Gaussian Process-ver-2 made by prof Moon
How it work?

- context $z_t \in Z$ from a set Z of contexts.
- action $s_t \in S$ from a set S of action
- payoff $y_t = f(s_t, z_t) + \epsilon_t$ where $f : S \times Z \rightarrow R$ (unknown)
- $\epsilon_t \sim N(0, \sigma^2)$: noise (independent across the rounds)

$$r_t = \sup_{s' \in S} f(s', z_t) - f(s_t, z_t)$$ regret at each round
$$R_T = \sum_{t=1}^{T} r_t$$ cumulative regret

$X = S \times Z$: the set of all action-context pairs
$\mu: X \rightarrow R, \quad \mu(x) = E[f(x)]$

$\mu_T(x) = k_T(x)^T (K_T + \sigma^2 I)^{-1} y_T$,
$$k_T(x, x') = k(x, x') - k_T(x)^T (K_T + \sigma^2 I)^{-1} k_T(x'),$$
$$\sigma_T^2(x) = k_T(x, x),$$
where $k_T(x) = [k(x_1, x) \ldots k(x_T, x)]^T$ and K_T is the (positive semi-definite) kernel matrix $[k(x, x')]_{x, x' \in A_T}$. The choice of the kernel function turns out to be crucial in regularizing the function class to achieve sublinear regret (Section 4).

$\mu: X \rightarrow R, \quad \mu(x) = E[f(x)]$

$\mu_T(x) = k_T(x)^T (K_T + \sigma^2 I)^{-1} y_T$,
$$k_T(x, x') = k(x, x') - k_T(x)^T (K_T + \sigma^2 I)^{-1} k_T(x'),$$
$$\sigma_T^2(x) = k_T(x, x),$$
where $k_T(x) = [k(x_1, x) \ldots k(x_T, x)]^T$ and K_T is the (positive semi-definite) kernel matrix $[k(x, x')]_{x, x' \in A_T}$. The choice of the kernel function turns out to be crucial in regularizing the function class to achieve sublinear regret (Section 4).

$\mu: X \rightarrow R, \quad \mu(x) = E[f(x)]$

$\mu_T(x) = k_T(x)^T (K_T + \sigma^2 I)^{-1} y_T$,
$$k_T(x, x') = k(x, x') - k_T(x)^T (K_T + \sigma^2 I)^{-1} k_T(x'),$$
$$\sigma_T^2(x) = k_T(x, x),$$
where $k_T(x) = [k(x_1, x) \ldots k(x_T, x)]^T$ and K_T is the (positive semi-definite) kernel matrix $[k(x, x')]_{x, x' \in A_T}$. The choice of the kernel function turns out to be crucial in regularizing the function class to achieve sublinear regret (Section 4).

Copyright © 2018 by Tae hyeon Kim, Dept. of Knowledge and Service Engineering, KAIST
How to train?

- context $z_t \in Z$ from a set Z of contexts.
- action $s_t \in S$ from a set S of action
- payoff $y_t = f(s_t, z_t) + \epsilon_t$ where $f: S \times Z \rightarrow R$ (unknown)
- $\epsilon_t \sim N(0, \sigma^2)$: noise (independent across the rounds)

$$r_t = \sup_{s' \in S} f(s', z_t) - f(s_t, z_t) \text{ regret at each round}$$
$$R_T = \sum_{t=1}^{T} r_t \quad \text{cumulative regret}$$

$X = S \times Z$: the set of all action-context pairs

$\mu: X \rightarrow R, \quad \mu(x) = E[f(x)]$

$\mu(x) = \mathbb{E}[f(x)]$

$\kappa(x, x') = \mathbb{E}[(f(x) - \mu(x))(f(x') - \mu(x'))]$

[WLOG] $\mu \equiv 0, k(x, x) \leq 1, \text{ for all } x \in X$

Mean function

Covariance function

Sigma is from error, and the identity matrix is from the assumption of the independence between error terms

$$\mu_T(x) = k_T(x)^T (K_T + \sigma^2 I)^{-1} y_T,$$
$$k_T(x, x') = k(x, x') - k_T(x)^T (K_T + \sigma^2 I)^{-1} k_T(x'),$$
$$\sigma^2_T(x) = k_T(x, x),$$

where $k_T(x) = [k(x_1, x) \ldots k(x_T, x)]^T$ and K_T is the (positive semi-definite) kernel matrix $[k(x, x')]_{x, x' \in X}$. The choice of the kernel function turns out to be crucial in regularizing the function class to achieve sublinear regret (Section 4).

$s_t = \arg \max_{s \in N} \mu_{t-1}(s, z_t) + \beta_t^{1/2} \sigma_{t-1}(s, z_t)$,

Using this upper confidence bound
Before preview…

The regret R_T of the GP-UCB algorithm can be bounded as $O^*(\sqrt{T\gamma_T})$

\[
I(y_A; f) = H(y_A) - H(y_A|f)
\]

Shannon entropy

It quantifies the mutual information between the observed context-action pairs and the estimated payoff function f
Theorem 1 Let $\delta \in (0, 1)$. Suppose one of the following assumptions holds

1. X is finite, f is sampled from a known GP prior with known noise variance σ^2, and $\beta_i = 2 \log(|X|^{1/2}/\sigma^2/\delta^2)$

2. $X \subseteq [0, r]^d$ is compact and convex, $d \in \mathbb{N}$, $r > 0$. Suppose f is sampled from a known GP prior with known noise variance σ^2, and that $k(x, x')$ satisfies the following high probability bound on the derivatives of GP sample paths f: for some constants $a, b > 0$,

$$\Pr \left\{ \sup_{x \in X} |\partial f / \partial x_j| > \beta_i \right\} \leq ae^{-(x/b)^3}, \quad j = 1, \ldots, d.$$

Choose $\beta_i = 2 \log(t^2\pi^2/3\delta^2) + 2d \log \left(t^2dbr \sqrt{\log(4da/\delta^2)} \right)$.

3. X is arbitrary, $\|f\|_k \leq B$. The noise variables ϵ_i form an arbitrary martingale difference sequence (meaning that $E[\epsilon_1 | \epsilon_1, \ldots, \epsilon_{i-1}] = 0$ for all $i \in \mathbb{N}$), uniformly bounded by σ. Further define $\beta_i = 2B^2 + 300\sqrt{\ln(1/\delta)}$.

Then the contextual regret of GP-UCB is bounded by $O^*(\sqrt{TY/\beta_T})$ w.h.p. Precisely,

$$\Pr \left\{ R_T \leq \sqrt{C_T \beta_T / Y} + 2 \quad \forall T \geq 1 \right\} \geq 1 - \delta,$$

where $C_1 = 8/\log(1 + \sigma^{-2})$.

(1) A known GP prior and finite X

(2) Infinite X with mild assumptions about k

(3) f has low “complexity” as quantified in terms of the Reproducing Kernel Hilbert Space norm associated with kernel k.

Copyright © 2018 by Tae hyeon Kim, Dept. of Knowledge and Service Engineering, KAIST
Theorem 2. Let k_Z be a kernel function on Z with rank at most d (i.e., all Gram matrices over arbitrary finite sets of points $A \subseteq Z$ have rank at most d). Then

$$\gamma(T; k_S \oplus k_Z; X) \leq d\gamma(T; k_S; S) + d\log T.$$

The assumptions of Theorem 2 are satisfied, for example, if $|Z| < \infty$ and $\text{rk} K_Z = d$, or if k_Z is a d-dimensional linear kernel on $Z \subseteq \mathbb{R}^d$. Theorem 2 also holds with the roles of k_Z and k_S reversed.

Theorem 3. Let k_S and k_Z be kernel functions on S and Z respectively. Then for the additive combination $k = k_S \oplus k_Z$ defined on X it holds that

$$\gamma(T; k_S \oplus k_Z; X) \leq \gamma(T; k_S; S) + \gamma(T; k_Z; Z) + 2\log T.$$
Main Contribution

1. Develop an efficient algorithm, CGP-UCB, for the contextual GP bandit problem;
2. Show that by flexibly combining kernels over contexts and actions, CGP-UCB can be applied to a variety of applications;
3. Provide a generic approach for deriving regret bounds for composite kernel functions;
4. Evaluate CGP-UCB on two case studies, related to automated vaccine design and sensor management.
5. The posterior inference can be performed in closed form.